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Mining Graph/Network Data
• Introduction to Graph/Network Data

• PageRank

• Classification via Label Propagation

• Spectral Clustering

• Summary
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Graph, Graph, Everywhere
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Why Graph Mining?
• Graphs are ubiquitous

• Chemical compounds (Cheminformatics)

• Protein structures, biological pathways/networks (Bioinformactics)

• Program control flow, traffic flow, and workflow analysis 

• XML databases, Web, and social network analysis

• Graph is a general model
• Trees, lattices, sequences, and items are degenerated graphs

• Diversity of graphs
• Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted, 

with angles & geometry (topological vs. 2-D/3-D) 

• Complexity of algorithms: many problems are of high complexity



Representation of a Graph
• 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸 >

• 𝑉𝑉 = {𝑢𝑢1, … ,𝑢𝑢𝑛𝑛}: node set
• 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉: edge set

• Adjacency matrix
• 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁

• 𝑎𝑎𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖𝑖𝑖 < 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖 >∈ 𝐸𝐸
• 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖 < 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖 >∉ 𝐸𝐸

• Undirected graph vs. Directed graph
• 𝐴𝐴 = 𝐴𝐴T 𝑣𝑣𝑣𝑣.𝐴𝐴 ≠ 𝐴𝐴T

• Weighted graph
• Use W instead of A, where 𝑤𝑤𝑖𝑖𝑖𝑖 represents the weight of edge

< 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖 >
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Example
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Yahoo

M’softAmazon

y   1    1     0
a   1    0     1
m  0    1     0

y    a    m

Adjacency matrix A
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The History of PageRank

• PageRank was developed by Larry Page (hence the name
Page-Rank) and Sergey Brin.

• It is first as part of a research project about a new kind of
search engine. That project started in 1995 and led to a
functional prototype in 1998.

• Shortly after, Page and Brin founded Google.



Ranking web pages
•Web pages are not equally “important”

• www.cnn.com vs. a personal webpage

• Inlinks as votes
• The more inlinks, the more important

•Are all inlinks equal?
• Higher ranked inlink should play a more 
important role

• Recursive question! 

11

http://www.cnn.com/


Simple recursive formulation
• Each link’s vote is proportional to the 
importance of its source page

• If page P with importance x has n outlinks, each 
link gets x/n votes

• Page P’s own importance is the sum of the 
votes on its inlinks

12

Yahoo

M’softAmazon

1/2

1



Matrix formulation
• Matrix M has one row and one column for each web 

page
• Suppose page j has n outlinks

• If j -> i, then Mij=1/n

• Else Mij=0

• M is a column stochastic matrix
• Columns sum to 1

• Suppose r is a vector with one entry per web page
• ri is the importance score of page i

• Call it the rank vector

• |r| = 1 (i.e., 𝑟𝑟1 + 𝑟𝑟2 + ⋯+ 𝑟𝑟𝑁𝑁 = 1)
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y   1    1     0
a   1    0     1
m  0    1     0

y    a    m

½, 0, 1



Eigenvector formulation
•The flow equations can be written 

r = Mr
•So the rank vector is an eigenvector of the 
stochastic web matrix
• In fact, its first or principal eigenvector, with 
corresponding eigenvalue 1
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Example

Yahoo

M’softAmazon

y   1/2 1/2   0
a    1/2  0    1
m    0  1/2   0

y    a     m

y = y /2 + a /2
a = y /2 + m
m = a /2

r =              M       *       r

y       1/2 1/2   0     y
a   =  1/2   0    1     a
m       0  1/2   0     m
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Power Iteration method
•Simple iterative scheme 
•Suppose there are N web pages

• Initialize: r0 = [1/N,….,1/N]T

• Iterate: rk+1 = Mrk

• Stop when |rk+1 - rk|1 < ε
• |x|1 = ∑1≤i≤N|xi| is the L1 norm 
• Can use any other vector norm e.g., Euclidean

16



Power Iteration Example

Yahoo

M’softAmazon

y   1/2 1/2   0
a    1/2  0    1
m    0  1/2   0

y    a     m

y
a    =
m

1/3
1/3
1/3

1/3
1/2
1/6

5/12
1/3
1/4

3/8
11/24
1/6

2/5
2/5
1/5

. . .

𝒓𝒓0 𝒓𝒓1 𝒓𝒓2 𝒓𝒓3 … 𝒓𝒓∗



Random Walk Interpretation
• Imagine a random web surfer

• At any time t, surfer is on some page P
• At time t+1, the surfer follows an outlink from 
P uniformly at random

• Ends up on some page Q linked from P
• Process repeats indefinitely

•Let p(t) be a vector whose ith component 
is the probability that the surfer is at page 
i at time t
• p(t) is a probability distribution on pages

18



The stationary distribution
•Where is the surfer at time t+1?

• Follows a link uniformly at random
• p(t+1) = Mp(t)

•Suppose the random walk reaches a state 
such that p(t+1) = Mp(t) = p(t)
• Then p(t) is called a stationary distribution for 
the random walk

•Our rank vector r satisfies r = Mr
• So it is a stationary distribution for the random 
surfer
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Existence and Uniqueness
A central result from the theory of random walks (aka Markov 
processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 
eventually will be reached no matter what 
the initial probability distribution at time t 
= 0.
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Spider traps
•A group of pages is a spider trap if there 
are no links from within the group to 
outside the group
• Random surfer gets trapped

•Spider traps violate the conditions needed 
for the random walk theorem
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Microsoft becomes a spider trap

Yahoo

M’softAmazon

y   1/2 1/2   0
a    1/2  0    0
m    0  1/2   1

y    a     m

y
a    =
m

1/3
1/3
1/3

1/3
1/6
1/2

1/4
1/6
7/12

5/24
1/8
2/3

0
0
1

. . .
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Random teleports
•The Google solution for spider traps
•At each time step, the random surfer has 
two options:
• With probability β, follow a link at random
• With probability 1-β, jump to some page 
uniformly at random

• Common values for β are in the range 0.8 to 
0.9

•Surfer will teleport out of spider trap 
within a few time steps
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Random teleports (β = 0.8)

Yahoo

M’softAmazon

1/2

1/2

0.8*1/2

0.8*1/2

0.2*1/3

0.2*1/3

0.2*1/3

y   1/2
a    1/2
m    0

y
1/2
1/2
0

y

0.8*
1/3
1/3
1/3

y

+ 0.2*

1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

24

: teleport links from “Yahoo”



Random teleports (β = 0.8)

Yahoo

M’softAmazon

1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

y
a    =
m
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Matrix formulation
•Suppose there are N pages

• Consider a page j, with set of outlinks O(j)
• We have Mij = 1/|O(j)| when j->i and Mij = 0 
otherwise

• The random teleport is equivalent to
• adding a teleport link from j to every other page 

with probability (1-β)/N
• reducing the probability of following each outlink

from 1/|O(j)| to β/|O(j)|
• Equivalent: tax each page a fraction (1-β) of its 

score and redistribute evenly 
26



PageRank
•Construct the N-by-N matrix A as follows

• Aij = βMij + (1-β)/N

•Verify that A is a stochastic matrix
•The page rank vector r is the principal 
eigenvector of this matrix
• satisfying r = Ar

•Equivalently, r is the stationary 
distribution of the random walk with 
teleports

27



Dead ends
•Pages with no outlinks are “dead ends” for 
the random surfer
• Nowhere to go on next step
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Microsoft becomes a dead end

Yahoo

M’softAmazon

y
a    =
m

1/3
1/3
1/3

1/3
0.2
0.2

0
0
0

. . .

1/2 1/2   0
1/2   0    0
0   1/2   0

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15   1/15

0.8 + 0.2

Non-
stochastic!
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Dealing with dead-ends
•Teleport

• Follow random teleport links with probability 
1.0 from dead-ends

• Adjust matrix accordingly

•Prune and propagate
• Preprocess the graph to eliminate dead-ends 

• Might require multiple passes
• Compute page rank on reduced graph
• Approximate values for deadends by 
propagating values from reduced graph
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Dealing dead end: teleport

Yahoo

M’softAmazon

1/2 1/2   0
1/2   0    0
0   1/2   0

0.2*1/3 0.2*1/3 1*1/3
0.2*1/3 0.2*1/3 1*1/3
0.2*1/3 0.2*1/3 1*1/3

y   7/15  7/15   1/3
a   7/15  1/15   1/3
m  1/15  7/15   1/3

0.8 +
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Dealing dead end: reduce graph

32

Yahoo

M’softAmazon

Yahoo

Amazon

Yahoo

M’softAmazon

B

Yahoo

M’softAmazon

Yahoo

Amazon

Ex.2: 

Ex.1: 



Computing PageRank

• Key step is matrix-vector multiplication
• rnew = Arold

• Easy if we have enough main memory to 
hold A, rold, rnew

• Say N = 1 billion pages
• We need 4 bytes for each entry (say)
• 2 billion entries for vectors, approx 8GB
• Matrix A has N2 entries

• 1018 is a large number!
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Rearranging the equation
r = Ar, where
Aij = βMij + (1-β)/N
ri = ∑1≤j≤N Aij rj

ri = ∑1≤j≤N [βMij + (1-β)/N] rj

= β ∑1≤j≤N Mij rj + (1-β)/N ∑1≤j≤N rj

= β ∑1≤j≤N Mij rj + (1-β)/N, since |r| = 1
r = βMr + [(1-β)/N]N
where [x]N is an N-vector with all entries x

34



Sparse matrix formulation
• We can rearrange the page rank equation:

• r = βMr + [(1-β)/N]N

• [(1-β)/N]N is an N-vector with all entries (1-β)/N

• M is a sparse matrix!
• 10 links per node, approx 10N entries

• So in each iteration, we need to:
• Compute rnew = βMrold

• Add a constant value (1-β)/N to each entry in rnew

35



Sparse matrix encoding
•Encode sparse matrix using only nonzero 
entries
• Space proportional roughly to number of links

• say 10N, or 4*10*1 billion = 40GB

• still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source
node degree destination nodes

36



Basic Algorithm 
• Assume we have enough RAM to fit rnew, plus some 

working memory
• Store rold and matrix M on disk

Basic Algorithm:
• Initialize: rold = [1/N]N

• Iterate:
• Update: Perform a sequential scan of M and rold to update rnew

• Write out rnew to disk as rold for next iteration
• Every few iterations, compute |rnew-rold| and stop if it is below 

threshold

• Need to read in both vectors into memory

37



Mining Graph/Network Data
• Introduction to Graph/Network Data
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• Summary
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Label Propagation in the Network
•Given a network, some nodes are given 
labels, can we classify the unlabeled 
nodes by using link information?
• E.g., Node 12 belongs 

to Class 1 and Node 5 

Belongs to Class 2

39
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Reference
•Learning from Labeled and Unlabeled 
Data with Label Propagation
• By Xiaojin Zhu and Zoubin Ghahramani

• http://www.cs.cmu.edu/~zhuxj/pub/CMU-
CALD-02-107.pdf
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Problem Formalization
•Given n nodes

• l with labels (e.g., 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑙𝑙 𝑎𝑎𝑟𝑟𝑎𝑎 𝑘𝑘𝑘𝑘𝑘𝑘𝑤𝑤𝑘𝑘)
• u without labels (e.g., 𝑌𝑌𝑙𝑙+1,𝑌𝑌𝑙𝑙+2, … ,𝑌𝑌𝑛𝑛 are 
unknown)

•𝑌𝑌 𝑖𝑖𝑣𝑣 𝑡𝑡𝑡𝑎𝑎 𝑘𝑘 × 𝐶𝐶 𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎𝑙𝑙 𝑚𝑚𝑎𝑎𝑡𝑡𝑟𝑟𝑖𝑖𝑚𝑚
• C is the number of labels (classes)

•The adjacency matrix is W
•The probabilistic transition matrix T

•𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑃𝑃 𝑗𝑗 → 𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖
∑𝑘𝑘 𝑤𝑤𝑘𝑘𝑖𝑖
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The Label Propagation Algorithm
•Step 1: Propagate 𝑌𝑌 ← 𝑇𝑇𝑌𝑌

•𝑌𝑌𝑖𝑖 = ∑𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖 = ∑𝑖𝑖 𝑃𝑃 𝑗𝑗 → 𝑖𝑖 𝑌𝑌𝑖𝑖
•Step 2: Row-normalize Y

• The summation of the probability of each 
object belonging to each class is 1

•Step 3: Reset the labels for the labeled 
nodes. Repeat 1-3 until Y converges
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Example: Iter = 0
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Example: Iter = 1
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Example: Iter = 2
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𝑌𝑌6 = 𝑃𝑃(7 → 6)𝑌𝑌7 + 𝑃𝑃 11 → 6 𝑌𝑌11 + 𝑃𝑃 10 → 6 𝑌𝑌10
+ 𝑃𝑃 3 → 6 𝑌𝑌3 + 𝑃𝑃 4 → 6 𝑌𝑌4 + 𝑃𝑃 0 → 6 𝑌𝑌0

= (3/4,0)+(0,3/4) = (3/4,3/4)
After normalization, 𝑌𝑌6 = (1

2
, 1
2
)

6



•Repeat until converge…
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Clustering Graphs and Network Data

• Applications
• Bi-partite graphs, e.g., customers and products, authors and 

conferences
• Web search engines, e.g., click through graphs and Web 

graphs
• Social networks, friendship/coauthor graphs

48
Clustering books about politics [Newman, 2006]



Spectral Clustering
•Reference: ICDM’09 Tutorial by Chris Ding
•Example:

• Clustering supreme court justices according to 
their voting behavior

49
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Example: Continue
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Spectral Graph Partition
•Min-Cut

• Minimize the # of cut of edges

51



Objective Function
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Algorithm
•Step 1:

• Calculate Graph Laplacian matrix: 𝐿𝐿 = 𝐷𝐷 −𝑊𝑊
•Step 2:

• Calculate the second eigenvector q

•Step 3:
• Bisect q (e.g., 0) to get two clusters  

53



*Minimum Cut with Constraints

54



*New Objective Functions

55



Other References
•A Tutorial on Spectral Clustering by U. 
Luxburg
http://www.kyb.mpg.de/fileadmin/user_u
pload/files/publications/attachments/Lux
burg07_tutorial_4488%5B0%5D.pdf
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Mining Graph/Network Data
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• PageRank

• Classification via Label Propagation
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• Summary
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Summary
•Ranking on Graph / Network

• PageRank

•Classification via label propagation
•Clustering

• Spectral clustering
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Announcements
•Presentation next week

• Team 1-4: Monday

• Team 5-8: Wednesday

•Project report, code, and data 
• 6/12

•Teaching evaluation form

59
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